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Abstract Structure–water solubility modeling of aliphat-
ic alcohols was performed using the multifunctional
autocorrelation method. The molecule is represented by
using a set of parameters describing global molecules, and
others that take the structural environment of the edge O–
C into account. Multiple linear regression (MLR) and
multilayer feed-forward artificial neural network archi-
tectures are utilized to construct linear and nonlinear
QSPR models, respectively. The optimal QSPR model
was developed based on a 4–4–1 neural network archi-
tecture. The efficiency of the approach is demonstrated
through the predictive ability of the ANN and MLR
models by the leave-20%-out (L20%O) cross-validation
method, demonstrating that the neural model is more
reliable than that obtained using MLR. The root mean
square errors in the solubility prediction (ln SOL) for the
calibration and predictive models were 0.13 and 0.18
respectively. On the other hand, we tested four activation
functions: the hyperbolic tangent, sigmoid function or
Gaussian functions for the hidden layer and a linear,
sigmoid, hyperbolic tangent or Gaussian function for the
output layer. The influence and the contribution of each
type of descriptor in the model is examined. After
omission of a set of descriptors, we calculate the error for
the solubility and classify them into discrete categories.
The standard error and the percentage of the prediction in
the precision interval considered have been estimated.
The results imply that the solubility of aliphatic alcohols
is dominated by the shape and branching of the molecule.
The hydrogen-bonding interactions caused by the C–OH
group seem to be a less important factor influencing the
solubility. The model was compared with other models;
especially that using weighted path numbers, which is
considered to be the most accurate QSPR model for
predicting the water solubility of aliphatic alcohols.
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Introduction

Many factors influence the physical properties of a
molecule, among them are the molecular size, shape and
the electronic structure. These factors are associated with
various aspects of intermolecular interactions such as van
der Waals forces. Numerous methods have been intro-
duced in order to describe the chemical structure for a
given set of molecules and several of them are based on
the molecular graph in conjunction with the structures and
properties of molecules. Among the large variety of
descriptions, many are based on topological indices (TI)
[1, 2, 3, 4, 5] contained in molecular graphs, usually
hydrogen-depleted graphs. The topology of a chemical
structure can be coded by the adjoining matrix A=(aij),
where aij is the weight of the edge (i,j), aij=0 if the
vertices i and j are not connected by an edge. The weight
of aij is chosen in order to take into account the
differences between the types of atoms and bonds.
Another matrix Dij, called the distance matrix, will be
defined, whose entries, dij, are equal to the number of
edges connecting vertices i and j on the shortest path
between them.

Different numbers characterizing the chemical struc-
ture of the molecule are calculated from its graph. Such
numbers are called topological indices (TI). Topological
indices have found a wide variety of applications in
structural chemistry [6]. In particular, they can be used to
code chemical information, in designing a chemical
experiment, in the theory of the atomic structure and
reactivity of molecules, and for the quantitative descrip-
tion of chemical structures in the analysis of the relation
between the structure of a molecule and its properties.
However, these conventional indices do not take into
account the contributions of each of the individual atom
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types or groups to properties and tend to obscure this fact.
In this case, most of models correlating physical proper-
ties of complex compounds are unsuccessful.

The aim of this paper is to investigate the ability of the
autocorrelation method to describe aliphatic alcohols in a
QSPR model for the simulation of their water solubility.
For molecules such as alcohols, the polarity and the
ability of the molecule to participate in hydrogen bonding
caused by heteroatoms may be a very important factor
influencing physical properties that depend directly on the
strength of intermolecular forces. We must then take into
account the contribution of the individual group C–O to
the physical property by adding new descriptors derived
from the modified autocorrelation method.

The vector of the autocorrelation method used as a
structural descriptor consists of only four components: the
first two describe the global molecule; the second two
encode the environment of the hydroxyl group.

For the statistical method used for deriving the model,
we use a classical three-layer feedforward neural network
(FFNN) trained by the back-propagation algorithm and
multilinear regression (MLR). The linear model was
essentially employed to investigate the behaviour of each
type of component. A first model took into consideration
only the usual components describing global molecules in
order to see how much is gained by adding components
that take the hydroxyl group of the molecule into account.

There are several models for predicting the solubility
of aliphatic alcohols. The first was based on topological
indices. Kier and Hall [7] constructed a simple model by
introducing the vertex-connectivity index c in Randic’s
original formulation [3]. The model (1) obtained was
good enough for practical purposes because only one
descriptor was considered. It leads to the following
equation:

ln Sol ¼ 6:702� 2:666c; n ¼ 51; r ¼ 0:978 and s ¼ 0:455

The vertex-connectivity index for aliphatic alcohols
considered in this equation was computed for the related
alkanes.

However, to derive more significant models to
estimate water solubility of alcohols, it seemed logical
to consider parameters that take the hydroxyl group in the
molecule into account. Another parameter was added that
defines whether we are dealing with primary, secondary
or tertiary alcohols. Monoparametric correlation with
the water solubility of alcohols improves significantly
(r=0.991 and s=0.289)

Another model based on the surface of the molecule
was recently proposed by Amidon et al. [8] who
considered 51 aliphatic alcohols. The first model uses
one descriptor representing the total surface area (TSA) in
�2. The model produced a coefficient r close to 0.974,
while the standard deviation s was close to 0.706.
However, a model relating ln Sol to two parameters, the
contribution of the hydrocarbon surface area and the
hydroxyl group, has better statistical characteristics
(r=0.978, s=0.462).

The most accurate model uses weighted path numbers
[9] combined with multilinear regression. A weighted
path contains weighted edges. In the case of aliphatic
alcohols, the weight of the edge representing the C–O
bond is taken to be x, while the weights of the edges
representing C–C bonds are equal to one. The length of a
path containing the edge with weight x is simply denoted
by x. For example, the weighted path numbers for 3,3-
dimethyl-1-butanol (Table 1) are equal to the sum of
weighted paths over all vertices in a graph divided by 2, x
is left undefined and it will be adjusted by the regression
analysis to obtain the smallest standard error. The
optimum standard error of estimate, s for various values
of x for four weighted paths (P1, P2, P3, P4) is found to be
0.216.

The examples listed below show that models that use
descriptors that take not only molecular size but also the
hydroxyl group into account give good statistical charac-
teristics. Based on this observation, we use the autocor-
relation method to develop two types of descriptors. In the
first, we compute the autocorrelation vector based on the
van der Waals volume of the alkane molecule corre-
sponding to aliphatic alcohol considered. This gives us a
global description of the molecular environment in space
(molecular size, shape and branching). Then we compute
an autocorrelation vector for the hydroxyl group within
the molecule.

Method

The modified autocorrelation method (MAM) derived from the
multifunctional autocorrelation method of Moreau et al. [10] was
used in the structure–property relationships. The autocorrelation
vector generated was used as a possible descriptor in QSARs and
can be useful for database characterization and encoding various
physicochemical properties. [11, 12, 13, 14]

The general relation used to calculate the autocorrelation
component is defined below:

Pk ¼
Xn

k¼0

ðf ðiÞf ðjÞÞx ð1Þ

where Pk is the autocorrelation component corresponding to the
topological distance of k bonds (smallest number of bonds between
i and j) to the specific property f(i). The atomic contribution f(i)
depends on the property under study. These properties can be
based, as an example, on the van der Waals volume (V) and surface
(S) to account for the size and the shape of the molecule,

Table 1 The count of paths and weighted paths representing the
hydrogen-depleted skeleton of 3,3-dimethyl-1-butanol

Vertex P1 P2 P3 P4

1 1+x 1 3
2 2 3+x
3 4 1 x
4 1 3 1 x
5 1 3 1 x
6 1 3 1 x
7 x x x 3x
Weighted path numbers 5+x 7+x 3+x 3x
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connectivity (number of non-hydrogen neighbors or vertex degree
of the atom i) or electronegativity and charge to account for the
electronic aspect.

To describe the local environments of atoms in a molecule, we
define, similar to Pk, a new component Pik by means of the
following formula:

Pik ¼
Xn

k¼0

ðf ðiÞf ðjÞÞx ð2Þ

We compute Pik by fixing the atom i, Pik is defined as the sum of
f(i)*f(j) of all chemical bonds existing between all pairs of carbon
atoms i (fixed atom) and j separated by a topological distance equal
to k.

Example of computation of Pk and Pik components

2,3,4-Trimethylhexane (Fig. 1) was chosen to illustrate the cal-
culation of components of autocorrelation vectors. The properties
of different atoms present in the molecule (CH3, CH2, CH, and C)
are given in Table 2.

Taking 2,3,4-trimethylhexane, shown in Fig. 1, for example, the
procedure of computing the components of autocorrelation vectors,
using the MAM method, is illustrated as follows. The properties of
different atoms present in the molecule (CH3, CH2, CH, C) are
given in Table 2.

f(i)=van der Waals volume

There are nine carbon atoms. Based on connecting C–C bond
numbers between two atoms, they can be classified as four basic
types: types 1, 2, 3 and 4 for primary (CH3–), secondary (CH2<),
tertiary (–CH<), and quaternary (>C<) carbons, then we get for
k=0:

V0 k ¼ 0ð Þ ¼ 5� 13:67ð Þ þ 1� 10:23ð Þ þ 3� 6:78ð Þ ¼ 98:92

For a topological distance equal to 1 (k=1), there are eight pairs (i,
j) of atoms [(1, 2); (2, 3); (2, 4); (4, 5); (4, 6); (6, 7); (6, 8); (8, 9)]
and we compute V1 as follows:

V1 k ¼ 1ð Þ¼ ½4 13:67� 6:78ð Þ1=2 þ 2 6:78� 6:78ð Þ1=2

þ 6:78� 10:23ð Þ1=2þ 10:23� 13:78ð Þ1=2� ¼ 72:22

For a local atom environment, we consider as an example only
carbon atom number 4 (Fig. 1) to compute its components by using
descriptors based on van der Waals volume as atomic properties

f(i)=van der Waals volume

Pik is defined as Vik

– For k=1

V41 ¼ 2 6:76� 6:76ð Þ1=2 þ 6:76� 13:67ð Þ1=2
h i

¼ 23:18

This corresponds to three pairs of atoms (4, 2), (4, 6) and (4, 5) with
a topological distance equal to 1.

– For k=2

V42¼ 3 6:76 � 13:67ð Þ1=2þ 6:76 � 10:23ð Þ1=2
h i

¼ 37:15

– Etc.

Experimental section

Data set

The data set used in this paper was reported by Amic et al
[9]. They showed the chemical structure of 50 aliphatic
alcohols and developed a model based on weighted path
numbers. The 50 aliphatic alcohols (Table 3) consist of
different types of structures: aliphatic (linear and
branched), primary, secondary and tertiary carbon. The
water solubility used in this work were expressed in
ln Sol. Their values ranges from �8.2208 for decanol up
to 0.0953 for the 1-butanol.

In order to simplify the computation of the compo-
nents, molecules were coded by means of the SMILES
system [15] and stored as input files. The computer
program used to compute the components represents an
algorithm for the construction of the connectivity matrix
of any molecule from its SMILES code. The linear
regression and the neural network were performed using
Excel statistical procedures from the Microsoft office and
Quiknet packages, respectively.

Linear regression

Both Pk(Vk) and Pik(Vik) (the letter P is replaced by the
letter V) components are computed for all molecules. The
first takes the global description of the molecule’s
environment in space into account, the second that of
the hydroxyl group within the molecule. In the first, a
linear modeling method was used to investigate the
behaviour of the Vk components. They were based on van
der Waals volumes (V0–V5). Generally, the model offers

Fig. 1 A hydrogen-depleted molecular graph corresponding to the
skeleton of 2,3,4-trimethylhexane

Table 2 Contributions of atoms to some molecular properties

No. of atoms in molecule (Fig. 1)

Property 1 2 3 4 5 6 7 8 9
van der Waals volume V (cm3 mol�1) 13.67 6.78 13.67 6.78 13.67 6.78 13.67 10.23 13.67
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us an adequate estimation of the water solubility of all the
aliphatic alcohols (n=50; r=0.97; s=0.38).

The intercorrelation matrix of the components (V0–V5)
for the 50 alcohols shows a high intercorrelation coeffi-
cient between V0 and V1. This indicates that these
components express approximately the same type of
structural information. V0 represents only the size of the
molecule, while the component V1, defined as the sum of
f(i)*f(j) of all chemical bonds existing between all pairs of
adjoining carbon atoms in the molecule under consider-
ation, takes the molecular size and the branching of the

molecule into account.V0, V3, V4, and V5 contribute
poorly, so we define a new model in which components
V0, V3, V4i and Vi5 are not considered and confirmed that
the quality of regression did not change (r=0.97, s=0.38)

The model can be considered good enough. However,
to derive a more significant model to estimate the water
solubility, it seemed logical to consider the contribution
of the edge O–C. When we add components related to the
description of the hydroxyl group Vik (k=1, 2) (Vi0 was the
same for all molecules), the model is much improved over
the above model. The standard error estimated decreases

Table 3 The autocorrelation vector, experimental, calculated (calibration and cross-validation) water solubility of 50 aliphatic alcohols

No. SMILES code Autocorrelation vector ln Sol

V1 V2 V11 V12 Exp MLRcal MLRcv ANNcal ANNcv

1 occ(c)c 39.41 46.95 11.83 9.63 0.0227 0.1422 0.1162 0.1217 �0.1180
2 oc(c)cc 39.41 46.95 9.63 25.50 0.0658 0.5987 0.6310 0.2185 0.1538
3 occc(c)c 49.64 57.47 11.83 11.83 �1.1680 �1.2708 �1.2710 �1.1648 �1.1410
4 occ(c)cc 49.93 53.14 11.83 9.63 �1.0584 �1.1531 �1.1470 �1.0955 �1.1210
5 oc(c)ccc 49.64 57.47 9.63 25.50 �0.6349 �0.7320 �0.7494 �0.6130 �0.6490
6 oc(cc)cc 49.93 53.14 9.63 23.65 �0.4861 �0.6049 �0.6085 �0.4651 �0.4144
7 oc(c)c(c)c 45.29 65.85 9.63 23.30 �0.4050 �0.5101 �0.5036 �0.3518 �0.3648
8 oc(c)(c)cc 37.90 83.23 6.75 39.17 0.3386 0.2524 0.2206 0.0294 �0.1188
9 oc(cc)ccc 60.16 63.66 9.63 23.65 �1.8326 �1.9364 �1.9377 �1.9013 �1.8535

10 oc(c)(cc)cc 48.82 84.70 6.75 37.32 �0.8301 �0.9044 �0.8676 �0.8569 �0.8336
11 oc(c)(c)ccc 48.13 94.15 6.75 39.17 �1.1178 �1.0752 �1.1000 �1.0186 �0.9385
12 oc(c(c)c)cc 55.82 72.33 9.63 21.45 �1.6094 �1.7106 �1.7475 �1.6125 �1.6072
13 oc(c)c(c)cc 55.82 72.33 9.63 23.30 �1.6399 �1.8023 �1.7848 �1.6844 �1.6854
14 oc(c)(c)c(c)c 44.25 97.06 6.75 36.97 �0.8510 �0.8072 �0.7902 �0.7627 �0.6018
15 occc(c)(c)c 48.13 94.15 11.83 11.83 �2.5903 �2.1598 �2.0913 �2.5039 �2.5648
16 oc(c)c(c)(c)c 44.25 97.06 9.63 20.42 �1.4106 �1.2893 �1.2965 �1.3408 �1.3197
17 occcc(c)c 59.87 67.70 11.83 11.83 �2.2828 �2.5651 �2.5576 �2.5862 �2.7410
18 oc(c)cc(c)c 55.17 81.42 9.63 25.50 �1.8140 �1.9589 �1.9855 �1.7927 �1.9794
19 occ(cc)cc 60.46 59.57 11.83 9.63 �2.7871 �2.4452 �2.3871 �2.6856 �2.5300
20 oc(c)(c)cccc 58.36 104.38 6.75 39.17 �2.4734 �2.3936 �2.4204 �2.3896 �2.4615
21 oc(c)(cc)ccc 59.05 95.61 6.75 37.32 �2.2634 �2.2325 �2.2335 �2.2211 �2.1468
22 oc(cc)(cc)cc 59.73 86.41 6.75 35.48 �1.9173 �2.0555 �2.0088 �1.9828 �2.0515
23 oc(c)(c)c(c)cc 54.77 103.93 6.75 36.97 �2.0025 �2.0950 �2.0535 �2.0087 �2.0489
24 oc(c)(cc)c(c)c 55.16 98.81 6.75 35.12 �1.9379 �1.9586 �1.9138 �1.9073 �1.9639
25 oc(c)(c)cc(c)c 53.66 118.56 6.75 39.17 �2.1456 �2.2996 �2.3296 �2.2908 �2.3955
26 oc(c(c)c)c(c)c 61.70 91.88 9.63 19.25 �2.8018 �2.8121 �2.8825 �2.7552 �2.8267
27 oc(cc)c(c)(c)c 54.77 103.93 9.63 18.57 �2.6437 �2.4855 �2.5619 �2.7061 �2.6232
28 oc(cc)cccc 70.39 73.89 9.63 23.65 �3.1942 �3.2536 �3.2731 �3.2174 �3.1674
29 oc(ccc)ccc 70.39 74.19 9.63 23.65 �3.1966 �3.2682 �3.2639 �3.2317 �3.1445
30 oc(c)(cc)c(c)(c)c 54.73 124.65 6.75 32.24 �2.9318 �2.6806 �2.5343 �2.9313 �2.9964
31 oc(c)cccccc 80.33 88.16 9.63 25.50 �4.7560 �4.6820 �4.7117 �4.7057 �4.8111
32 occ(cc)cccc 80.92 80.33 11.83 9.63 �4.9967 �5.0757 �5.0658 �4.7980 �5.0530
33 oc(c)ccccccc 90.56 98.39 9.63 25.50 �6.3200 �5.9983 �5.9851 �6.2780 �6.1767
34 oc(cc)cccccc 90.85 94.35 9.63 23.65 �6.1193 �5.8863 �5.8581 �5.9609 �5.9287
35 oc(ccc)ccccc 90.85 94.65 9.63 23.65 �5.9522 �5.9018 �5.9785 �5.9915 �6.0228
36 oc(cccc)cccc 90.85 94.65 9.63 23.65 �5.7446 �5.9026 �5.9574 �5.9915 �6.1090
37 oc(cc(c)c)cc(c)c 81.45 122.08 9.63 23.65 �5.7764 �5.7235 �5.7879 �5.7317 �5.4416
38 oc(c(c)cc)c(c)cc 82.75 104.85 9.63 19.25 �5.2983 �5.3991 �5.3810 �5.2631 �5.3916
39 occ(cc)(cc)ccc 80.88 99.28 11.83 6.75 �5.5728 �5.7285 �5.5789 �5.6834 �5.6023
40 occccccc(c)c 90.56 98.39 11.83 11.83 �5.7446 �6.5142 �6.5477 �5.8201 �6.1776
41 occc(c)cc(c)(c)c 74.42 135.27 11.83 11.83 �5.7699 �5.9234 �5.9521 �5.7514 �5.4932
42 occcc 44.11 33.88 11.83 11.83 0.0953 �0.0407 �0.0066 0.0384 �0.0519
43 occccc 54.34 44.11 11.83 11.83 �1.3471 �1.3570 �1.3569 �1.3068 �1.1813
44 occ(c)(c)c 37.90 83.23 11.83 6.75 �0.6463 �0.6863 �0.8173 �0.6972 �0.8952
45 occcccc 64.57 54.34 11.83 11.83 �2.7181 �2.6734 �2.6886 �2.7287 �2.8620
46 oc(c)cccc 59.87 67.70 9.63 25.50 �1.9951 �2.0492 �2.0572 �1.9423 �1.8259
47 occccccc 74.80 64.57 11.83 11.83 �4.0745 �3.9897 �3.9847 �3.9607 �4.0885
48 occcccccc 85.03 74.80 11.83 11.83 �5.4015 �5.3061 �5.2806 �5.4628 �5.3653
49 occccccccc 95.26 85.03 11.83 11.83 �6.9078 �6.6224 �6.5557 �7.0191 �6.9940
50 occcccccccc 105.49 95.26 11.83 11.83 �8.2208 �7.9388 �8.0047 �7.8950 �7.7613
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dramatically from s=0.38 to s=0.21. For components Pik
(k>=3), there is not much difference, so we selected,
according to the principle of Occam’s razor [16], a model
with the least number of parameters, that is, the four-
descriptor model (V1, V2, Vi1, Vi2) for computing the water
solubility for aliphatic alcohols. We calculate the error for
each of the 50 values of the water solubility and classify
them into a discrete category (here in [0–0.2], and [0–
0.3]). The standard error and the percentage of the
prediction in the precision interval considered are shown
in Table 4. For the model based on components belonging
to the second type, regressions were very much worse. In
the above results, the Vk components up to k=2 represent
factors of prime importance in the modeling of the water
solubility of aliphatic alcohols.

We also used the leave-20%-out cross validation
technique as a criterion for checking the quality of the
model. In this procedure 20% of the whole set data were
selected out one after another. For every selection the
model was built with the remaining 80% examples. Next,
the model was used to predict the water solubility for the
selected molecules. This procedure is repeated five times
until all patterns are selected in a prediction set once and
only once. The combined results of the solubility values
estimated gave information on the prediction ability. A
linear regression between experimental and predicted
values leads to the following results. The cross-validation
standard coefficient r between ln Solexp and ln Solcalc is
0.98, while the cross-validation standard s and the mean
error are equal to 0.22 and 0.15, respectively. Fitted
values by using cross validation are shown in column 7 of
Table 3.

Neural network

Artificial neural networks (ANNs) appear to be very
promising in obtaining models that convert structural
features into different properties of chemical compounds.
In the field of QSPR, the application of ANNs has
demonstrated their efficiency compared to traditional
multilinear regression, particularly in cases where it is
difficult to specify an exact mathematical model that
describes a structure–property relationship. In this paper,
we show strong evidence that the mutifunctional auto-
correlation method is useful for ANN modeling of the
water solubility of aliphatic alcohols.

The main advantage of using neural networks in QSPR
models is their capacity to offer a non-linear mapping of
the structural descriptors to the physicochemical property.
It is interesting to see how much is gained with ANNs in

the prediction power of water solubility of aliphatic
alcohols in comparison to the linear regression method.

The computational neural network used in this study
was a three-layer (input-hidden-output), fully connected,
feed-forward network. The input layer contains one node
for each structural descriptor (autocorrelation compo-
nent). The size of the input layer of the network is
determined by the length of the code used to describe the
environment of the molecule. The output layer has one
node generating the scaled estimated value of the water
solubility of the molecule considered. Although there are
neither theoretical nor empirical rules to determine the
number of hidden layers or the number of neurons in this
layer, one layer seems to be sufficient in most chemical
applications of ANNs. The number of hidden neurons
needs to be sufficient to ensure that the information
contained in the description data is adequately represent-
ed.

Four types of activation function were used: the
hyperbolic tangent or a sigmoid or Gaussian function for
the hidden layer and a hyperbolic tangent, sigmo�d or
linear function for the output layer. A bias neuron was
used in the input layer connecting to all neurons of the
hidden layer and to the output layer.

The weights of connections between the neurons were
initially assigned random values uniformly by using the
standard back-propagation method [17]. The training was
initiated and followed by examining the RMS error (RMS
stands for root mean square, that is the square root of the
average residual) for the total set and also for both the
training and the test sets. Training was stopped when
there was no further improvement in the test set RMS
error. We also computed the correlation coefficient
between the observed and predicted values.

Recent work, [18] based on empirical observations
suggest that only networks with a r parameter greater
than 2 (r is the ratio of the number of patterns in the
training to the number of connections) should be used for
QSPR in order to ensure that the network can give reliable
predictions. The few data and the number of components
(V1, V2, Vi1, Vi2) representing the vector of the autocor-
relation method force us to search for the optimal network
architecture according to the above limits by varying the
number of hidden neurons from 1 to 4. In order to
establish the optimal size of the hidden layer (the number
of the neurons), a first application uses all the components
(V1, V2, Vi1, Vi2) as input values by applying a cross-
validation technique. This was carried out iteratively. We
started from one neuron in the hidden layer, the statistical
indices of the correlation between experimental and
predicted water solubility for the whole data set (50

Table 4 Percentage of predic-
tion in the interval [0–0.3] and
>0.3 by considering respective-
ly components (V1, V2,) and (V1,
V2, Vi1, Vi2)

Descriptor considered Standard deviation (r2, rms) Percentage of deviation

[0–0.3] [0–0.2]

(V1, V2,) (0.99; 0.38) 27/50 17/50
(V1, V2, Vi1, Vi2) (0.99; 0.21) 47/50 44/50
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values) improves with increasing number of neurons. The
optimal number of neurons in the hidden layer was found
to be four with 5,000 iterations for a calibration model.
The standard error of the estimate (RMS) was used as a
criterion for the selection of the optimum number of
hidden neurons.

Except for the linear output function, all four combi-
nations of activation functions listed above gave close
results for the calibration model, but we have observed
that the hyperbolic function performs better. Thus, each
neuron of a given layer (except the input one) takes a
value Y calculated by using the following transfer
function:

Oi ¼ 1= 1þ exp �
X

WijOj
þ qj

� �� �� �
ð3Þ

where Oi and Oj are the outputs of neurons i and j,
respectively, Wij is the weight connecting neurons i and j,
and qj is the bias of neuron j.

In order to compare the performance of the ANN
model with the statistical results of the MLR equation, we
have used the correlation coefficient r, the standard
deviation s and the mean residual mres of the linear
correlation between experimental and predicted water
solubility. On the other hand, we have used the same set
of structural descriptors consisting of four components of
the autocorrelation method. The comparison shown in
Table 5 shows the neural network provides better
calibration (4–4–1, number of epochs=5,000, r=0.99,
s=0.11). For resitual values, we divided them into
different discrete categories [0–0.1], ]0.1–0.2], ]0.2–0.3]
and >0.3 as absolute residual. For the power predictive,
the L20% cross-validation was performed for the ANN
model by conserving the same partitioning of the patterns.
The statistical indices were again superior to those
obtained for the MLR model. We conclude that there is
a nonlinear relation between the structural descriptor

derived from the autocorrelation and the water solubility
of the aliphatic alcohols. Consequently, the use of the
ANN is justified.

To compare our approach to other models, we have
selected the work based on the weighted path numbers.
The size of the code used to describe the environment of
the aliphatic alcohols consists of four parameters [9].
Only a model calibration for the multilinear regression
and the neural network is considered. Our comparison is
limited to the set considered in this work. On the whole,
results obtained by using the autocorrelation method are
better. In the MLR model, both models give almost the
same statistical parameters, but the distribution of the
fitted values is different. If we consider the number of
cases having an error in prediction lower than 0.2, we find
46 cases in the autocorrelation method compared to 37
cases for the weighted path numbers model. On the other
hand, the latter method gives two fitted values for which
the error deviation exceeds three times the standard
deviation in the ANN model. Results are reported in the
Table 6. The success of the autocorrelation method
depends on the correct description brought by each
component. Two types of components are considered
separately, the first ones describe the global molecule,
and the second ones encode the local environment of the
hydroxyl group.

Conclusion

In conclusion, the ANN approach using the multifunc-
tional autocorrelation method with restricted components
gives both a useful and simple mathematical model for
the prediction of the water solubility of aliphatic alcohols.
We are interested in this property because the toxic action
of these compounds depends mainly on their solubility in
water. A small number of topological parameters (four

Table 5 Statistical results, out-
liers and their residuals for
ANNs with 4–4–1 architecture
and the MLR model: model
calibration and prediction
(leave-10%-out cross-validation
method)

MLR ANN

MLRcal MLRcv ANNcal ANNcv

(r, s, rms) (0.99; 0.21; 0.12) (0.98; 0.22; 0.15) (0.99; 0.11; 0.08) (0.99; 0.18; 0.13)

Percentage of prediction

[0–0.1] 27 28 37 23
[0.1–0.2] 19 10 9 15
[0.2–0.3] 1 5 4 6
>0.3 3 7 0 6 (LnSol<0.5)

Table 6 Statistical results, out-
liers and their residuals ob-
tained using autocorrelation
method and model based on
weighted path numbers method
for the calibration model

Autocorrelation method Weighted path numbers method

MLRcal ANNcal MLRcal ANNcal

(r, s, rms) (0.99; 0.21; 0.12) (0.99; 0.11; 0.08) (0.99; 0.21; 0.17) (0.99; 0.14; 0.09)

Percentage of prediction

[0–0.1] 27 37 25 36
]0.1–0.2] 19 9 12 11
]0.2–0.3] 1 4 8 1
>0.3 3 0 5 2 (LnSol>0.4)
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components of the autocorrelation method) is efficient to
take into account all topological considerations of the
molecule. It has been demonstrated that water solubility
appears to be largely determined by the first components
(V1 and V2), which represent the size and the branching of
the molecule disturbed by the hydrogen-bonding interac-
tions caused by C–OH.
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